

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering Mobicom 2020

Deep Learning based Wireless Localization for Indoor Navigation

Roshan Ayyalasomayajula, Aditya Arun, Chenfeng Wu, Sanatan Sharma, Abhishek Sethi, Deepak Vasisht and Dinesh Bharadia

https://wcsng.ucsd.edu/dloc/

10

onnegroni.com/2015/04/15/the-humans-of-wall-e-were-p

Deep Learning based Wireless Localization for Indoor Navigation

DLoc and MapFind

Localization: Novel learning based approach to solve for the environment dependent localization.

Localization: Novel learning based approach to solve for the environment dependent localization.

Context: Bot that collects both Visual and WiFi data.

Localization: Novel learning based approach to solve for the environment dependent localization.

Context: Bot that collects both Visual and WiFi data.

Dataset: Deployed it in 8 different in a Simple and Complex Environment

Localization: Novel learning based approach to solve for the environment dependent localization.

Context: Bot that collects both Visual and WiFi data.

Dataset: Deployed it in 8 different in a Simple and Complex Environment

Results: Shown a 85% improvement compared to state of the art at 90th percentile.

Need Knowledge of Environment

Input Representation

Input Representation Output/Target Representation

Objective/Loss Function

Input Representation: Raw CSI data

Input Representation: Raw CSI data

Maximillian Arnold et. al., SCC 2019 Michal Nowicki et. al., ICA, 2017 Xuyu Wang, et al., IEEE Access 5, 2017 Xialong Zheng, et al., IEEE/ACM Transactions on Networking, 2017

Input Representation: Raw CSI data

Maximillian Arnold et. al., SCC 2019 Michal Nowicki et. al., ICA, 2017 Xuyu Wang, et al., IEEE Access 5, 2017 Xialong Zheng, et al., IEEE/ACM Transactions on Networking, 2017

Complex Channel Values and AWG noise

Input Representation: Raw CSI data

Maximillian Arnold et. al., SCC 2019 Michal Nowicki et. al., ICA, 2017 Xuyu Wang, et al., IEEE Access 5, 2017 Xialong Zheng, et al., IEEE/ACM Transactions on Networking, 2017

Complex Channel Values and AWG noise

Can we represent them as images?

Input Representation: AoA-ToF images

Input Representation: AoA-ToF images

Input Representation: AoA-ToF images

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

UC San Diego

VCSNG

Input Representation: XY images

AoA-ToF (Polar) to XY (cartesian)

Input Representation: XY images

AoA-ToF (Polar) to XY (cartesian)

NCSNG

Electrical and Computer Engine

Input Representation: XY images

AoA-ToF (Polar) to XY (cartesian)

CSNG

Image-to-Image translation problem

VCSNG

Network Architecture

Network Architecture

WCSNG

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Network Architecture

JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Location Loss

Closeness in MSE sense

$$L_{location} = L2[D_{location}E(H) - T]$$

Location Loss

Closeness in MSE sense

$$L_{location} = L2[D_{location}E(H) - T]$$

Penalize multiple peaks

Location Loss

Closeness in MSE sense

$$L_{location} = L2[D_{location}E(H) - T]$$

Penalize multiple peaks

$$L_{location} = L2[D_{location}E(H) - T] + \lambda L1[D_{location}E(H)]$$

High 90th percentile errors: Asynchronous Clocks

High 90th percentile errors: Asynchronous Clocks

High 90th percentile errors: Asynchronous Clocks

ToF offset

ToF offset compensation

DLoc: Network Architecture

Offset Corrected Images

Input Images

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

DLoc: Network Architecture

Input Images

Insight: Single source

DLoc: Network Architecture

UC San Diego JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

21

WCSNG

DLoc: Network Architecture

Offset Corrected Images

Offset Compensation Loss

Defines consistency across images

$$L_{consistency} = \frac{1}{N_{AP}} \sum_{i=1}^{N_{AP}} L2[D_{consistency}(E(H)) - T_{consistency}]_i$$

Offset Compensation Loss

Defines consistency across images

$$L_{consistency} = \left(\frac{1}{N_{AP}}\sum_{i=1}^{N_{AP}}L2[D_{consistency}(E(H)) - T_{consistency}]_{i}\right)$$

How much data is needed?

Path Planning

Path Planning

Maximize coverage

Minimize traversal length

Path Planning

Maximize coverage

Minimize traversal length

Context Enabled Accurate Indoor Localization

Results

Complex High-multipath and NLOS environment (1500 sq. ft.)

Complex High-multipath and NLOS environment (1500 sq. ft.)

Complex High-multipath and NLOS environment (1500 sq. ft.)

Simple LOS based environment (500 sq. ft.)

Accurate Indoor Localization

Setup-1

Setup-2

Setup-3

• 1			Trained on Setup	Tested on Setup	Median Error (cm)		90 th Percentile Error (cm)	
					DLoc	SpotFi	DLoc	SpotFi
	Setup-1	Setup-2	1,3,4	2				
			1,2,4	3				
	Setup-3	Setup-4	1,2,3	4				

			Trained on Setup	Tested on Setup	Median Error (cm)		90 th Percentile Error (cm)	
					DLoc	SpotFi	DLoc	SpotFi
	Setup-1	Setup-2	1,3,4	2		198		420
			1,2,4	3		154		380
	Setup-3	Setup-4	1,2,3	4		161		455

			Trained on	Tested on	Median Error (cm)		90 th Percentile Error (cm)	
			Setup	Setup	DLoc	SpotFi	DLoc	SpotFi
	Setup-1	Setup-2	1,3,4	2	71	198	171	420
			1,2,4	3	82	154	252	380
			1,2,3	4	105	161	277	455

Setup-3

Setup-4

• Enabling Baseline comparison for all algorithms

- Enabling Baseline comparison for all algorithms
- Pushing Indoor Localization to realization

- Enabling Baseline comparison for all algorithms
- Pushing Indoor Localization to realization
- Pushing towards a competition similar to ImageNet program

- Enabling Baseline comparison for all algorithms
- Pushing Indoor Localization to realization
- Pushing towards a competition similar to ImageNet program

Labelled WiFi CSI data (WILD-v1)

- 8 different setups
- 4 different days
- 108K datapoints
- 2 different environments

- Enabling Baseline comparison for all algorithms
- Pushing Indoor Localization to realization
- Pushing towards a competition similar to ImageNet program

Labelled WiFi CSI data (WILD-v1)

- 8 different setups
- 4 different days
- 108K datapoints

ectrical and Computer Engi

2 different environments

WILD-v2 Coming Soon

- 20 different setups
- 10 different days
- 1 million datapoints
- 8 different environments
- 20 different AP locations

https://wcsng.ucsd.edu/wild/

Conclusion and Future Work

- Novel Deep Learning based algorithm with 85% incremental performance compared to state-of-the-art.
- MapFind we have collected over 108k datapoints (and expanding) that is opensourced.
- Enabling large scale and autonomous indoor navigation

https://wcsng.ucsd.edu/dloc/

