Eric A. Walker

PhD

Eric Walker.

Eric A. Walker

PhD

Eric A. Walker

PhD

Research Topics

Catalysis; data science; high performance computing

Biography Publications Teaching Research Group
  1. Chen, J.; Giewont, K.; Walker, E. A.; Lee, J.; Niu, Y.; Kyriakidou, E. A. Cobalt-Induced  PdO Formation on Low-Loading Pd/BEA Catalysts for CH4 Oxidation. ACS Catal., 2021, 11, 13066-13076. 
  2. Lee, J.; Giewont, K.; Chen, J.; Liu, C.-H.; Walker, E. A.; Kyriakidou, E. A. Ag/ZSM-5  Traps for C2H4 and C7H8 Adsorption under Cold-Start Conditions. Micropor. Mesopor.  Mat., 2021, 327, 111428. 
  3. Kundu, S. K.; Rajadurai, V. S.; Yang, W.; Walker, E.; Mamun, O.; Bond, J.; Heyden, A.  Surface Structure Sensitivity of Hydrodeoxygenation of Biomass-derived Organic Acids  over Palladium Catalysts: A Microkinetic Modeling Approach. Catal. Sci. Technol. 2021, in press, DOI: 10.1039/D1CY01029H. 
  4. Becerra, Alejandro; Prabhu, Anand; Rongali, Mary Sharmila; Velpur, Sri Charan Simha;  Debusschere, Bert; Walker, Eric A., How a Quantum Computer Could Quantify  Uncertainty in Microkinetic Models. J. Phys. Chem. Lett., 2021, 12, 6955-6960. 
  5. Chen, Junjie; Buchanan, Timothy; Walker, Eric A.; Toops, Todd J.; Li, Zhenglong;  Kunal, Pranaw; Kyriakidou, Eleni A. Mechanistic Understanding of Methane  Combustion over Ni/CeO2: A Combined Experimental and Theoretical Approach. ACS  Catal., 2021, 11, 9345-9354. 
  6. Giewont, K.; Kyriakidou, E. A.; Walker, E. A. Investigation of Potential Catalytic  Active Sites of Pd/SSZ-13: A DFT Perspective. J. Phys. Chem. C, 2021, 125 (28),  15262–15274.
  7. Walker, E. A.; Pallathadka, S. A. How a Quantum Computer Could Solve a  Microkinetic Model. J. Phys. Chem. Lett., 2021, 12, 592-597. 
  8. Liu, Chih-Han; Giewont, Kevin; Toops, Todd; Walker, E. A.; Horvatits, C.; Kyriakidou,  E. Non-catalytic gas phase NO oxidation in the presence of decane. Fuel, 2020, 286 (1),  119388
  9. Walker, E. A.; Ravisankar, K.; Savara, A. CheKiPEUQ Intro 2: Harnessing  Uncertainties from Data Sets, Bayesian Design of Experiments in Chemical Kinetics.  ChemCatChem, 2020, accepted, 10.1002/cctc.202000976. Special Collection: Data  Science in Catalysis. 
  10.  Savara, A.; Walker, E. A. CheKiPEUQ Intro 1: Bayesian Parameter Estimation  Considering Uncertainty or Error from both Experiments and Theory. ChemCatChem 2020, accepted, 10.1002/cctc.202000953. Special Collection: Data Science in Catalysis. 
  11. Horvatits, C.; Lee, J.; Kyriakidou, E. A.; Walker, E. A. Characterizing Adsorption Sites  on Ag/SSZ-13 Zeolites: Experimental Observations and Bayesian Inference. J. Phys.  Chem. C, 2020, 124 (35), 19174-19186. Special Issue: Machine Learning in Physical  Chemistry. 
  12. Walker, E. A.; Mohammadi, M. M.; Swihart, M. T. Graph Theory Model of Dry  Reforming of Methane Using Rh(111). J. Phys. Chem. Lett., 2020, 11, 4917-4922. 
  13. Horvatits, C.; Li, D.; Dupuis, M.; Kyriakidou, E. A.; Walker, E. A. Ethylene and Water  Co-Adsorption on Ag/SSZ-13 Zeolites: A Theoretical Study. J. Phys. Chem. C., 2020, 124 (13), 7295-7306. 
  14. Kammeraad, J.; Goetz, J.; Walker, E.; Tewari, A.; Zimmerman, P. What Does the  Machine Learn? J. Chem. Inf. Model, 2020, 60 (3), 1290-1301. 
  15. Walker, E.; Ravisankar, K. Bayesian Design of Experiments: Implementation,  Validation and Application to Chemical Kinetics. 2019 arXiv:1909.03861. 
  16. Walker, E.; Kammeraad, J.; Goetz, J.; Robo, M.; Tewari, A.; Zimmerman, P. Learning  to Predict Reaction Conditions: Relationships between Solvent, Reactants and Catalyst. J.  Chem. Inf. Model. 2019, 59 (9), 3645-3654.
  17. Chowdhury, A.; Yang, W.; Walker, E.; Mamun, O.; Heyden, A.; Terejanu, G. Prediction  of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine  Learning. J. Phys. Chem. C., 2018, 122 (49), 28142-28150. Selected as Editor’s Choice Editor’s Choice- due to its potential for broad public interest, an honor given to only one  article from the entire American Chemical Society portfolio each day. 
  18. Walker, E.; Mitchell, D.; Terejanu, G. A.; Heyden, A. Identifying Active Sites of the  Water-Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty.  ACS Catal., 2018, 8, 3990–3998. 
  19. Mamun, O; Walker, E.; Faheem, M.; Bond, J. Q.; Heyden, A. Theoretical Investigation  of the Hydrodeoxygenation of Levulinic Acid over Ru (0001): A DFT and Microkinetic  Modeling Study. ACS Catal., 2017, 7, 215–228. 
  20. Walker, E.; Terejanu, G. A.; Ammal, S. C.; Heyden, A. Uncertainty Quantification  Framework Applied to the Water-Gas Shift Reaction over Pt-based Catalysts. J. Phys.  Chem. C, 2016, 120, 10328-10339. 
  21. Behtash, S.; Lu, J.;Walker, E.; Mamun, O.; Heyden, A. Solvent Effects in the Liquid  Phase Hydrodeoxygenation of Methyl Propionate over a Pd (111) Catalyst Model. J.  Catal., 2016, 333, 171-183. 
  22. Walker, E.; Rayman, S.; White, R. E. Comparison of a Particle Filter and Other State  Estimation Methods for Prognostics of Lithium-ion Batteries. J. Power Sources, 2015,  287, 1-12. 
  23. Walker, E.; Ammal, S. C.; Suthirakun, S.; Chen, F.; Terejanu, G. A.; Heyden, A. Mechanism of Sulfur Poisoning of Sr2Fe1.5Mo0.5O6-δ Perovskite Anode under Solid Oxide  Fuel Cell Conditions. J. Phys. Chem. C, 2014, 118, 23545-23552.