Alumni Life

Tiny Particles, Massive Rewards

Luisa Whittaker-Brooks’ work with nanomaterials might one day power the planet

Luisa Whittaker-Brooks. Photo: August Miller.

By Rebecca Rudell

Print
“A U.S. company optioned the patent, and now the technology is approaching commercial-ization. I got my PhD and made some money!”
Luisa Whittaker-Brooks (PhD ’11, MS ’09)

Nanomaterials—substances that measure a billionth of a meter (a sheet of paper is about 100,000 nanometers thick)—have been a hot topic among scientists for the past decade or so. They are also the main focus of Luisa Whittaker-Brooks’ (PhD ’11, MS ’09) research.

Since 2013, her findings on these miniscule materials have helped her earn more than $100,000 in funding. Not bad for a scientist just a few years out of graduate school.

Whittaker-Brooks, 32, has been intrigued by chemistry since high school. A teacher in her native Panama recognized her as an exceptional student and encouraged her to pursue chemistry as a career. In 2007, the budding scientist came to UB as a Fulbright fellow; in 2011, she received the Materials Research Society’s highest award presented to graduate students. She also completed her master’s and her PhD within three and a half years.

For her doctoral research, Whittaker-Brooks studied vanadium oxide, an inorganic compound with intriguing properties when prepared as a nanomaterial. “The cool thing is, when you work on a nanoscale, you start seeing extraordinary properties you don’t see in bulk materials,” she explains. For example, bulk copper bends, copper nanoparticles don’t. This feature of nanomaterials opens up a wide range of applications for medical, electronic and other fields. It’s as if Whittaker-Brooks and other material chemists have a whole new periodic table to play with.

At UB, she worked under Sarbajit Banerjee, a former assistant professor of chemistry, who led a study proposing that vanadium oxide could be used to coat windows and block sunlight when it’s hot out. “I always called it my baby,” Whittaker-Brooks says of the material. “It has a unique temperature response. When it’s hot, it turns opaque. When it’s cooler, it’s transparent.” The only problem: The transformation occurs at 68 C (154 F), which is too high to make it a viable technology.

Her PhD work focused on decreasing this temperature. “We were able to get the trigger point down to room temperature. In fact, a U.S. company optioned the patent, and now the technology is approaching commercialization. I got my PhD and made some money!”

The awards have continued to roll in since graduation. While performing postdoctoral research at Princeton in 2013, Whittaker-Brooks received a L’Oréal USA for Women in Science Fellowship, accompanied by a $60,000 research grant. Two years later, she won an additional $50,000 in funding through the Marion Milligan Mason Award, presented by the American Association for the Advancement of Science to four women in the U.S. who are beginning careers in the chemical sciences.

“She’s very gifted,” says Banerjee. “She’s done an incredible amount of important work, and these awards recognize her potential to be a leader in the field. I think she’s a superstar.”

Today, Whittaker-Brooks is an assistant professor of chemistry at the University of Utah. Her research group—made up of 14 students ranging from high school to postdoctorate—is trying to improve alternative renewable energy sources, specifically by combining solar and thermal energy.

It’s been suggested that if all the solar energy that hit the Earth in one hour could be collected, it would fulfill the energy needs of the planet for one year. But currently, silicon solar panels are only about 25 percent efficient, meaning 75 percent of the energy is dissipated as heat. Whittaker-Brooks’ team hopes to develop the nanotechnology to help collect this lost heat and convert it into electricity.

“We just need to find the right technology to increase this energy conversion,” she says. “I would be happy if I could get efficiency to 45 percent.” That would certainly be an incredible accomplishment—but just another day at the office for Whittaker-Brooks.

Ruth McLean

This is SO Amazing and seems it will soon provide Practical applications to the World at Large.

BRAVO to Prof Whittaker-Brooks.