
Optimizing School Districts to Reduce Segregation

Nina Gomez, Faculty Advisor: Rajan Batta

The Issue Of Segregation

- Historical policies separating racial groups
- Segregation persists due to economic disparities, prejudice/discrimination, barriers to upward mobility
- Racial inequalities are reproduced in schools
 - Most students attend their neighborhood school
 - Schools are primarily funded by property taxes

Wealthy Neighborhood

Higher Property Taxes

More Funding For Schools

Low Income Neighborhood

Lower Property Taxes

Less Funding For Schools

School Redistricting

- Similar to political redistricting
- Redrawing district boundaries to create balance
 - Districts have similar population
 - O Districts have similar demographics
- Districts should be compact and contiguous
 - To prevent inequality (e.g. gerrymandering)

Using Optimization

- Redistricting can be modeled using optimization
- The goal is to redraw elementary school assignment zones to reduce black-white segregation
- Case studies of Buffalo and Chicago
 - O Both are in the top 20 cities with the worst blackwhite segregation

The Model

```
I = set of block groups
J = set of schools
```

 $x_{ij} = 1$ if block group i is assigned to school j $x_{ij} = 0$ otherwise

 y_j = dissimilarity of school j

 $z_i = 1$ if block group i is reassigned $z_i = 0$ otherwise

 S_i = number of students in block group i W_i = number of whites in block group i N_i = number of non-whites in block group i L_i = current school assignment

 C_j = capacity of school j FC_j^{low} = lower percent change in capacity FC_j^{high} = upper percent change in capacity

 D_{ij} = travel time from block group i to school j T_i = maximum travel time

$$\min \sum_{j} y_{j}$$

$$\sum_{i} x_{ij} = 1, \ \forall i \in I$$

$$\sum_{i} S_i x_{ij} \le \left(1 + FC_j^{high}\right) C_j, \ \forall j \in J$$

$$\sum_{i} S_{i} x_{ij} \ge \left(1 - FC_{j}^{low}\right) C_{j}, \ \forall j \in J$$

$$\sum_{i} (N_i W - W_i N) x_{ij} \le y_j, \ \forall j \in J$$

$$\sum_{i} (W_i N - N_i W) x_{ij} \le y_j, \ \forall j \in J$$

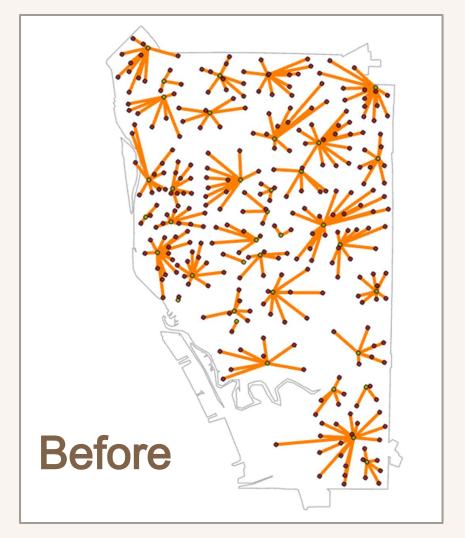
$$D_{ij}x_{ij} \le T_i, \ \forall i \in I, \forall j \in J$$

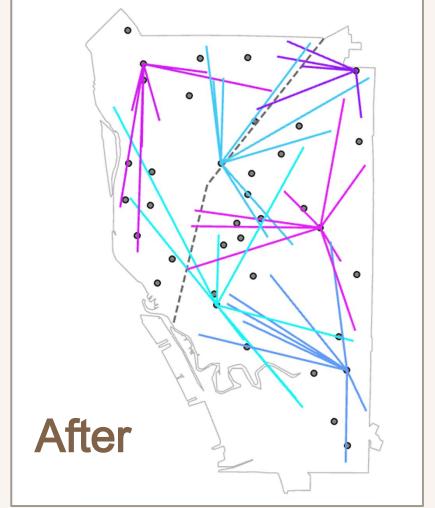
$$z_i = 1 - x_{iL_i}, \ \forall i \in I$$

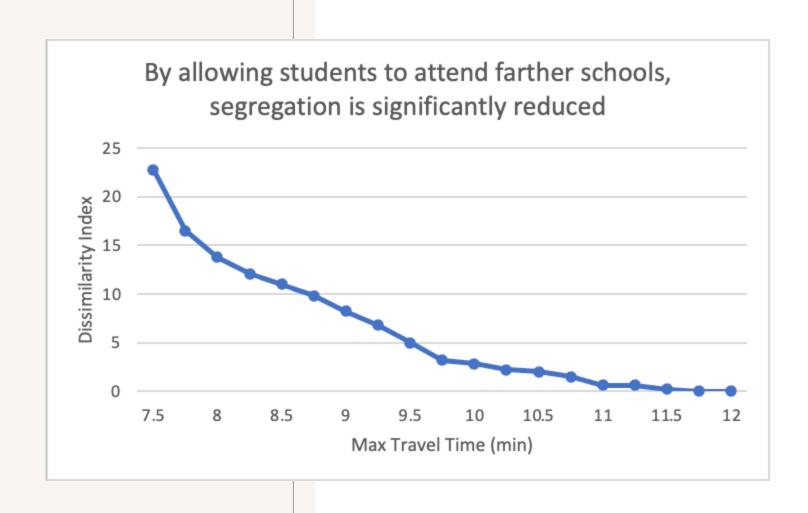
$$\sum_i z_i \leq \theta$$

$$x_{ij} \in \{0,1\}, \ \forall i \in I, \forall j \in J$$

Model Objective


- Minimize the dissimilarity index
 - o Most common measure of segregation
 - Degree to which a racial group is evenly distributed across schools
 - Scale from 0 (complete integration) to 100
 (complete segregation)


Model Constraints


- Each block group is assigned to one school
- School capacity remains the same
- Maximum student travel time
- Keep block groups/neighborhoods together
- Limit the number of block groups reassigned

Analyzing The Model

- As schools become more integrated...
 - Student travel time increases
 - Transportation is more expensive
- There are tradeoffs. How do we quantify them?

Thanks!