RidgeBase Benchmark Dataset

RidgeBase: A Cross-Sensor Multi-Finger Contactless Fingerprint Dataset.

Image with text reading RidgeBase Benchmark Dataset.

Paper accepted in IJCB 2022.

On this page:

Download the Dataset

To obtain the dataset please email the duly filled license agreement to:

cubs-ridgebase@buffalo.edu

Instructions for downloading the dataset will be provided upon receipt of the signed agreement.

For any queries please email: cubs-ridgebase@buffalo.edu

About the Dataset

RidgeBase consists of more than 15,000 contactless and contact-based fingerprint image pairs acquired from 88 individuals under different background and lighting conditions using two smartphone cameras and one flatbed contact sensor. RidgeBase is designed to promote research under different matching scenarios that include Single Finger Matching and Multi-Finger Matching for both contactless-to-contactless (CL2CL) and contact-to-contactless (C2CL) verification and identification.

RidgeBase dataset can be using for training and evaluating contactless fingerprint matching algorithms (CL2CL and C2CL) for three types of tasks:

  1. Task 1: Single Finger Matching
  2. Task 2: Four Finger Matching
  3. Task 3: Set-Based Matching

File Structure

RidgeBase
├── README.md
├── Task1
│   ├── readme.md
│   ├── Test
│   │   ├── Contactbased
│   │   │   ├── 1_14493_Left_Index.bmp
│   │   │   ├── 1_14493_Left_Little.bmp
│   │   │   ├── ...
│   │   └── Contactless
│   │       ├── 1_Apple_14493_1_LEFT_image_fingerprintSMEG5K05_0.png
│   │       ├── 1_Apple_14493_1_LEFT_image_fingerprintSMEG5K05_1.png
│   │       ├── ...
│   └── Train
│       ├── Contactbased
│       │   ├── 10727
│       │   │   ├── 1_10727_Left_Index.bmp
│       │   │   ├── 1_10727_Left_Little.bmp
│       │   │   ├── ...
│       │   ├── ...
│       └── Contactless
│           ├── 1_Apple_10727_1_LEFT_image_fingerprint8GIFPDNU_0.8888496160507202_3.png
│           ├── 1_Apple_10727_1_LEFT_image_fingerprint8GIFPDNU_0.9363613128662109_1.png
│           ├── ...
├── Task2
│   ├── Test
│   │   ├── Contactbased
│   │   │   ├── 14493
│   │   │   │   ├── 1_14493_Left_Four_Fingers.bmp
│   │   │   │   ├── 1_14493_Left_Four_Fingers.wsq
│   │   │   │   ├── ...
│   │   │   ├── ...
│   │   └── Contactless
│   │       ├── 14493
│   │       │   ├── 1_Apple_14493_1_LEFT_image_fingerprintSMEG5K05.png
│   │       │   ├── 1_Apple_14493_1_LEFT_image_fingerprintW51LRC2S.png
│   │       ├── ...   
│   └── Train
│       ├── Contactbased
│       │   ├── 10727
│       │   │   ├── 1_10727_Left_Four_Fingers.bmp
│       │   │   ├── 1_10727_Left_Four_Fingers.wsq
│       │   ├── ...   
│       └── Contactless
│           ├── 10727
│           │   ├── 1_Apple_10727_1_LEFT_image_fingerprint8GIFPDNU.png
│           │   ├── 1_Apple_10727_1_RIGHT_image_fingerprintDAH28AVI.png
│           ├── ... 
└── Task3
    └── DistalMatching
        ├── set_based_test_c2cl.json
        └── set_based_test_cl2cl.json

255 directories, 21624 files

Task Specific Details

Task 1

Contactbased:

<SessionID>_<IdentityID>_<HandID>_<FingerID>. (Example: 1_14493_Left_Index)

Contactless:

<SessionID>_<DeviceName>_<IdentityID>_<BackgroundID>_<HandID>_image_fingerprintRandomseq_<FingerID> (Example: 1_Apple_14493_1_LEFT_image_fingerprintSMEG5K05_0.png)

Note: For contactless training files we also provide the confidence score of predicted bounding box used to segment the finger.

<SessionID>_<DeviceName>_<IdentityID>_<BackgroundID>_<HandID>_image_fingerprintRandomseq_<Confidence>_<FingerID>

Example:

1_Apple_10727_1_LEFT_image_fingerprint8GIFPDNU_0.8888496160507202_3.png

Background IDs:

    1: Indoor
    2: Outdoor
    3: White

Task 2

Contactbased:

<SessionID>_<IdentityID>_<HandID>_Four_Fingers. (Example: 1_14493_Left_Four_Fingers.wsq)

Contactless:

<SessionID>_<DeviceName>_<IdentityID>_<BackgroundID>_<HandID>_image_fingerprintRandomseq

Example:

1_Apple_14493_1_LEFT_image_fingerprintSMEG5K05.png

Background IDs:

    1: Indoor
    2: Outdoor
    3: White

Task 3

Here we provide two JSON files which descibe the gallery and query sets for C2CL and CL2CL tasks for set based matching.

Note: These mappings are for evaluation only. Training set pairs can be created from Task 1 training set.

File name conventions are same as Task 1.

Acknowledgement

This work was conducted at the Center for Unified Biometrics and Sensors (CUBS) at the University at Buffalo and was supported by the Center for Identification Technology Research (CITeR) and the National Science Foundation through grant #1822190.

Publications

If you use RidgeBase dataset or the associated app in your research please cite following papers:

Plain Text:

B. Jawade, D. Mohan, S. Setlur, N. Ratha and V. Govindaraju "RidgeBase: A Cross-Sensor Multi-Finger Contactless Fingerprint Dataset," 2022 IEEE International Joint Conference on Biometrics (IJCB), 2022

Bibtex:

 
@book{jawade2022ridgebase,
 author = "B. Jawade and D. Mohan and S. Setlur and N. Ratha and V. Govindaraju",
 title = "RidgeBase: A Cross-Sensor Multi-Finger Contactless Fingerprint Dataset",
 publisher = "2022 {IEEE} International Joint Conference on Biometrics ({IJCB})",
 year = 2022
}
 
 

Plain Text:

B. Jawade, A. Agarwal, S. Setlur and N. Ratha, "Multi Loss Fusion For Matching Smartphone Captured Contactless Finger Images," 2021 IEEE International Workshop on Information Forensics and Security (WIFS), 2021, pp. 1-6, doi:10.1109/WIFS53200.2021.9648393.

Bibtex:

 
@INPROCEEDINGS{9648393, 
    author={Jawade, Bhavin and Agarwal, Akshay and Setlur, Srirangaraj and Ratha, Nalini},  
    booktitle={2021 IEEE International Workshop on Information Forensics and Security (WIFS)},   
    title={Multi Loss Fusion For Matching Smartphone Captured Contactless Finger Images},   
    year={2021},  
    volume={},  
    number={},  
    pages={1-6},  
    doi={10.1109/WIFS53200.2021.9648393}
}