Abstract
The modern Western diet is rich in advanced glycation end products (AGEs). We have pre-viously shown an association between dietary AGEs and markers of inflammation and oxidative stress in a population of end stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD). In the current pilot study we explored the effects of dietary AGEs on the gut bacterial microbiota composition in similar patients. AGEs play an important role in the development and progression of cardiovascular (CVD) disease. Plasma concentrations of different bacterial products have been shown to predict the risk of incident major adverse CVD events independently of traditional CVD risk factors, and experimental animal models indicates a possible role AGEs might have on the gut microbiota population. In this pilot randomized open label controlled trial, twenty PD patients habitually consuming a high AGE diet were recruited and randomized into either continuing the same diet (HAGE, n = 10) or a one-month dietary AGE restriction (LAGE, n = 10). Blood and stool samples were collected at baseline and after intervention. Variable regions V3-V4 of 16s rDNA were sequenced and taxa was identified on the phyla, genus, and species levels. Dietary AGE restriction resulted in a significant decrease in serum Nε-(carboxymethyl) lysine (CML) and methylglyoxal-derivatives (MG). At baseline, our total cohort exhibited a lower relative abundance of Bacter-oides and Alistipes genus and a higher abundance of Prevotella genus when compared to the published data of healthy population. Dietary AGE restriction altered the bacterial gut microbiota with a significant reduction in Prevotella copri and Bifidobacterium animalis rela-tive abundance and increased Alistipes indistinctus, Clostridium citroniae, Clostridium hathewayi, and Ruminococcus gauvreauii relative abundance. We show in this pilot study significant microbiota differences in peritoneal dialysis patients’ population, as well as the effects of dietary AGEs on gut microbiota, which might play a role in the increased cardio-vascular events in this population and warrants further studies.
Objective
Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD.
Design
Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Results Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na+-taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats.
Conclusions
The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome.