Operator algebras, noncommutative geometry, and dynamical systems.
PhD, University of California, Berkeley
Operator algebras, noncommutative geometry, and dynamical systems.
Hanfeng Li’s main research interest is on noncommutative geometry and dynamical systems, especially connections between operator algebras and dynamical systems. His recent work concentrates on actions of countable sofic groups and algebraic actions of general countable (amenable) groups.
H. Li and B. Liang, " Sofic mean length”, Adv. Math. 353 (2019), 802--858.
H. Li and B. Liang, "Mean dimension, mean rank, and von Neumann-Lueck rank", J. Reine Angew. Math. 739 (2018), 207--240.
N. Chung and H. Li, "Homoclinic groups, IE groups, and expansive algebraic actions", Invent. Math. 199 (2015), no. 3, 805--858.
H. Li and A. Thom, "Entropy, determinants, and L2-torsion", J. Amer. Math. Soc. 27 (2014), no. 1, 239--292.
H. Li, "Sofic mean dimension", Adv. Math. 244 (2013), 570--604.
D. Kerr and H. Li, "Soficity, amenability, and dynamical entropy", Amer. J. Math. 135 (2013), no. 3, 721--761.
H. Li, "Compact group automorphisms, addition formulas and Fuglede-Kadison determinants". Ann. of Math. (2) 176 (2012), no. 1, 303--347.
D. Kerr and H. Li, "Entropy and the variational principle for actions of sofic groups", Invent. Math. 186 (2011), no. 3, 501--558.
G. A. Elliott and H. Li, "Morita equivalence of smooth noncommutative tori", Acta Math. 199 (2007), 1--27.
D. Kerr and H. Li, "Independence in topological and C*-dynamics ", Math. Ann. 338 (2007), no. 4, 869--926.
D. Kerr and H. Li, "Dynamical entropy in Banach spaces", Invent. Math. 162 (2005), no. 3, 649--686.
H. Li, "Strong Morita equivalence of higher-dimensional noncommutative tori", J. Reine Angew. Math. 576 (2004), 167--180.